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We present a continuous extension of the recent Monte Carlo entropic method for sampling a density of
states restricted in dimensionless macroscopic parameters. The method performs a random walk through a
two-dimensional macrostate space and provides complete information in the form of continuous functions of
the system’s coupling constants. For the example of an Ising system, we project relaxation paths from Monte
Carlo Metropolis dynamic over the two-dimensional state space and compare them with a “most probable
path” associated with the equilibrium distribution, derived from the density of states. We observe a close
agreement between them in the stochastic regime, i.e., before the system escapes from the metastable state. We
establish a Markovian macroscopic dynamic over the two macroscopic parameters and we discuss it with
respect to the Metropolis microscopic dynani81063-651X%97)01511-(

PACS numbg(s): 64.60.My, 05.50+q, 05.70.Ln, 64.60.Qb

[. INTRODUCTION Statistical mechanics has a well-defined “canonical” formal-
ism for obtaining the equilibrium properties of macroscopic
It is very interesting, for the study of the equilibrium and matter, and also, to a lesser extent, the nonequilibrium prop-
nonequilibrium properties of a system, to access its fluctuagrties of systems close to equilibrium. There is, however, no
tions. It is now well established that equilibrium fluctuations such formalism for metastability and nucleation in finite sys-
play an important role in nonequilibrium thermodynamics.téms, only a collection ofd hoc methods, most of them
They are central to an understanding of nucleation phenonPproximate, for particular problems. The only rigorous
ena and metastable states related to them. Metastable stafi&atment of Penrose and Lebov{tz4] holds for systems
are very common in nature, and a very large class of appal¥ith weak long-ranged interaction$iquid-gas transitiop

ently stable states are actually metastable but very long lived/ere the metastable phase is formally described in terms of

Many crystallographic phases associated with Structurarlestrlcted equilibrium ensembles excluding microstates

" ; .. which dominate at equilibrium(for a detailed discussion
phase transitionge.g., diamony are metastable state with about the relevance of different treatments, see RI).

astronomical lifetimes. Experimentally these states are o Sor short-ranged models, there is no unique way to construct
served near first-order phase transitions in different contextSy \-h restricted ensemblés ie. to define a metastable con-

€.g., parts of hysteresis loops associated with the magnetizge, ation space. Nevertheless, the arbitrary nature of the re-
tion reversal in a ferromagnet or with phase separations iQtiction has no real practical incidence on the deduced prop-
alloys, supercooled vapor, and superheated liquid, switchingijes of the metastable state, as long as the latter are very
behavior in ferroelectric films or bistable molecular systemqOng lived[10,15. Hence, for short-ranged models the above
[1-5]. treatment is only as a conjecture, suggesting that a system
The question of the existence and properties of metastabl@maining in a metastable state samples the associated con-
states still remains a challenge to the theoretical physicistigurations according to their relative weight in the partition
Metastability is obviously, in almost all real systems, a ki- function.
netic phenomenon, except for some infinitely long-lived Different efforts have been made to demonstrate the rel-
metastable phases in systems with weak long-range interaevance of equilibrium properties in describing the relaxation
tions. It was demonstrated in the infinite-system formalismof a metastable state. The relation between nucleation barri-
that one-phase systems with short-ranged interactions cannets and the shape of the restricted free en&rgy) in finite
support infinite long-lived metastable stafés-9]. If the in-  systems have been studied by Schulm&é] and also by
teractions are short ranged only a finite-energy fluctuatioBinder and co-worker$17—19. Nucleation rates with dif-
(sometimes very largas needed in order for the system to ferent dynamics—cluster Swendsen-Wang dynamics or local
escape from the metastable phase: nucleation barriers are fitetropolis-like dynamics(see Refs.[20,21], and refs.
nite even in the thermodynamic limit. However, the lifetimesincluded—pointed out that metastable properties which are
may be very long even in a short-ranged interaction systerfunctions of equilibrium omuasiequilibriumbulk quantities
[10,11,9,12,18 and as long as the system remains “truly are the same in both dynamics. Recently, a detailed study on
metastable”(i.e., does not decayit is possible to perform the relaxation of metastable phases in an Ising ferromagnet
measurements of thermodynamic quantities such as specifi22] showed that the restricted bulk free enefgym) pro-
heat or susceptibility. These *“equilibrium” properties lead vides the essential characteristic behaviors of the latter when
to an interesting fundamental challenge aimed at describingsed to construct a local macroscopic mean-field-like dy-
metastable states from a statistical physics point of viewnamic.
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In this paper, we mainly focus on the possibility of de- range fluctuations. Several variants of the Metropolis algo-
scribing the metastable phase fluctuations by equilibrium disrithm have been propos¢d5—-2§ to overcome the problem,
tributions(ED’s). The above considerations suggest that anybasically consisting of exploring several areas of the state
dynamic which obeys the detailed balance statement, in adpace, by using several sets of coupling constéatapera-
dition to giving the correct equilibrium properties, would ture, interactions, energy gaps, ¢td.hey face serious diffi-
also give the correcyguasiequilibrium properties for the culties for connecting the separate pieces of information,
metastable state. Therefore, we can expect that the metmostly in the case of high-energy barriers. Recently, Lee
stable phase’s microscopic configuration space will be exf23] introduced a biased Monte Carlo method, the so-called
plored according to ED’s. If we project the latter over some“entropic sampling method,” which was shown to be
macroscopic variables, say total magnetizatioand energy equivalent to the previous Berg’s Multicanonical method
E of the well-known Ising model, it turns out that the two- [29,30,23. The Lee entropic sampling actually samples the
dimensional macroscopic configuration space resulting frontlensity of states, and since all areas of the state space are
this projection would be explored, obeying the correspondvisited, the necessary information for all temperatures is ob-
ing macroscopic distributioP(m,E). tained in a single sampling procedure.

The first advantage of a two-variable macroscopic state is In this paper we use the entropic sampling method for
the possibility of vizualizing relaxation paths. We analyzestoring a two-variable density of states. This is done for the
the possibility that not only small fluctuations but also largesimple example of an Ising-like system under a field, with
fluctuations, contributing to the escape from the metastablanique and constant nearest-neighbor interactions. The
phase, may be described by ED’s. Typically, we think thatwhole spectrum of the statistical distribution is derived as a
the comparison between the Metropolis dynamic’s two-continuous function of the model parameters.
dimensional relaxation paths from the metastable phase to
the stable phase, and the equilibrium distribution surface of A. Multidimensional densities of states
that system may be very informative. Hence, we investigate for complete equilibrium descriptions
how long it is possible to have an information on the long-
range equilibrium fluctuations in a reduced space, only by .
examining the whole spectrum of the projected ED's in thatti9envalues
space. Then, a mean-field-like Markovian macroscopic dy- R
namics may be constructed as an approximation of the exact H=—hY, 6:—3 o oj, (1)
projection of Markovian microscopic dynamics— i (i)

Metropolis, Glauber, heat bath—over the macroscopic states ) ) _ _

{m,E}, as is done in Ref22] for a one-dimensional space thg total energy is expressed in terms of d|mens_|0nless qguan-
described byF(m). A quantitative comparative study of the tities, proportional tan= 2 g; and the nearest-neighbor cor-
approximation’s quality for the one-and two-variable mean-rélations=2a;o;:
field-like dynamics is beyond the scope of the present study.

We just aim to point out the possible correlations between

the quality of the macroscopic dynamic approximation and . - o .
the properties of the ED surface. T_he car_10n|cal partlthn function is expressed in terms of the

The knowledge of the probability surface implies a com-dimensioniess quantities,
plete exploration of the reduced state space. This may be
done exactly for small systentisp to 6x 6), just by enumer- Z5=>, N(m,s)ex] — B(—hm—139)], 3
ating exhaustively all microscopic configurations; for larger m,s
ones, recent new Monte Carlo sampling methods have been
very successful. We use the entropic sampling mefl2@  with 8=1/kgT, and whereN(m,s) is the number of con-
that we adapted for sampling and storing a two-dimensiondigurations for a given set of values, af,s} is actually the
density of state® (E,m). This is reported in Sec. Il, where degeneracy of the macrostaim,s}. N(m,s) is of central
we describe, for the example of an Ising-like model, how tointerest here, and much macroscopic thermodynamical infor-
obtain a density of states which is independent of the Hamilmation can be derived from it. In a continuous approxima-
tonian’s parameters. Then we show how relaxation pathion, it should be substituted by the restricted density of
may be predicted from ED’'YSec. Ill), and in Sec. IV we statesD(m,s); for convenienceN(m,s) here will be termed
briefly define and apply a two-variable macroscopic dynamidhe density of states. The degeneracy of the energy Eevel
before discussing the results in the perspective of multivari-

able macroscopic dynamics as approximations of the micro- _
scopic dynamic. N(E)= > N(m,s), (4)

m,s;E

Starting from the well-known Hamiltonian, witty,= =1

E=—-hm-Js. 2

Il. EQUILIBRIUM DISTRIBUTIONS where tEheTshum is carnedd_on a[liln,ﬁ_}br_nacrost:;;te;_I_ct)_lc given
BY MONTE CARLO CALCULATIONS energyE. The corresponding equilibrium probabilities are

It is clear that the Monte Carlo Metropolis algorithisee, Ps(m,s)=N(m,s)exp(— B(—hm—1Js)/Z,. (5)
e.g., Ref.[24]) is not suited to access the whole spectrum
distribution of observable features of the system. It only ex-The restricted partition functioZz(m) and the resulting
plores the most probable configurations, implying short-probabilitiesP(m) are then derived:
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with, according to Eq(8), the flat character of the histogram

Zg(m)=2>, N(m,s)exd — B(—hm—Js)], (6)  H(m,s) as a convenient convergence criterion.
s As for the numerical limitations of the method, it is clear
Ps(m)=Z4(m)/Z. @ that they mainly lie in the random procedure. We observed

that the relative scatter of the histogram after a given MC

In addition, all macroscopic equilibrium quantities, e.g.,stage depends both on the quality of the initial density dis-
specific heat or susceptibility, can be derived frotm,s) tribution and on the number of MC sweeps per macrostate
analytically for any set of parameter values and any temperdor a stage; the total number of macrostates is proportional to
ture. The method is, in principle, easily extended to moreé\NP, with N the number of spins, amquthe number of dimen-
complicated Hamiltonians: the basic idea is that each energgionless parameters. An optimum strategy consists of starting
term in the Hamiltonian is represented by a macroscagiic ~ With short stages and then increasing the length of the next
mensionlessvariable; the state space is constructed alongtage if either the quality of the histogrartike mean “flat-
these macroscopic variables. Also, in the case of large sy$1ess’) is not improved or the number of visited macrostates
tems, the state space can be gridded, and the method follodi@s decreased. As an example, for the<32 system, we
in proper terms of the density of states. An attractive featurstarted with 16 MC sweeps, and finished the calculation
of the method is that the sampling is performed only oncewith the three final MC stages from 8 to *80" MC stages;
for a system of given size and interaction topology, even foat the final stage the resulting histograms presented a mean
various degeneracies attributed to the spin states, or whegiandard deviation of 2%.
switching from ferromagnetic to antiferromagnetic interac- It is clear that calculations for larger systems are no

tions. longer reasonable if one continues to project configurations
over the discrete set of tHes,m} values, because of tHé?
B. Entropic sampling for bidimensional density of states law for the number of macrostates. Using an IBM RS/6000

i ) ) i 560 computer with 100 megaflops, the reasonable practical
In this section we describe how the biased Monte Carlqinit seems to be around 1000 spins for the present example,
sampling method, called entropic samplif#g], is used to  \yhere we want to obtain a two-parameter information; the

calculate the density of states, i.e. the microcanonical €Nz avimum size of the planar system is then<a@®, giving
tropy, and we give some details on how it runs and CON498 252 macrostates, reduced to 249 126 using

verges. ) _ . ) D(—m,s)=D(m,s) symmetry. For comparison, the multi-
The entropic sampling methd@3] relies on the idea that  ,\,nical ensemble Berg's method can treat up te 64,
a Monte Carlo(MC) procedure yields any desired distribu- p \+ has to be repeated for each temperature, as in[R2.

tion P, provided that the same distribution is introduced as & 3rger sizes, one could proceed in terms of a continuous
bias in the detailed balance equation. Such a property deriveg, it of states with a grid state space in order to limit the
from the properties of the Markov chains, irrespective of thenumber of macrostates to be sampled. However, the grid’s

actual physical Process. To achieve a complete eXplor.atiol?\tervals along the energy dimension must not be large com-
of the state space, a biased method has to favor configur ared tokgT

tions belonging to weakly degenerate macrostgsasall
density of states and to dampen those belonging to the
highly degenerate macrostatéarge density of stat¢sthe
latter are those sampled by a simple sampling or by an im
portance samplingthe Metropolis algorithmat high tem-
peratures. The biasing probability, which is suited for an

We illustrate the method with an88 square planar Ising
system. The initial density has been obtained via a Gray code
on a 4x4 system. In Fig. 1 we show the random walk of the
sampling algorithm; the iterative process included four MC
stages, each made of lMC stages. In Fig. 2 we plot the
. ) : . average squared displacement, in the fourth MC stage, as a
uniform exploranon Of the state Space, merely is the. INVErSfunction of the number of MC stages, i.e., as a function of
of the restricted densny_of states. Slnc_e the lattex piori .the elapsed time. It is concluded from both figures that the
unknown, a good starting approximation, as suggested "Besired uniform exploration of the state space has been cor-

Ref.”[23],. Is the Qenslltydoi sta_tesdo_f a similar systedmtr(])f rectly achieved, as a random, diffusionlike, walk, through a
smaller Siz€, previously determined in some way, an e'Eonverging iterative process. In Fig. 3 we present the histo-

scaled for the larger size system. The process can be r'ﬁ}am provided by the fourth MC stage. As desired, it is rea-

iteratively, and we term;(m,s) the density of states ob- sonably flat. As a check of the reliability of the method, we

tainec:. aftgr itergtigrﬂ. 'I;hen, gsmq\llvil(m{s) gs ? bi?s, a,!\/IC d show in Fig. 4 the specific heat computed for several square
sampiing IS run, 1t 1s termed a “Monte t.arlo stage,” an planar systems of finite sizd =8 and 16,h=0), which

yields a histogram of the frequ_ency of the _macrostfites ompare quite well to the exact Onsager solution.
H;(m,s). Once corrected for the bias, the resulting restricte

density of states is obtained as
ll. EQUILIBRIUM PROBABILITY SURFACE
Ni+1(m,s)~N;(m,s).H;(m,s). 8 AND RELAXATION FROM METASTABLE STATES

It must be pointed out that all involved quantities are di- We focus here on the properties of metastable states in
mensionless, e.g., there is no temperatasein Ref[23]) at  ferromagnetic systems with short-range interactions, pre-
this stage of the method. Equati@® may yield at once, i.e. pared in a total magnetization configuration opposite to the
through a single MC stage, the correct result, for a greaaipplied field. Again we use the nearest-neighbor Ising sys-
number of MC sweeps, even if the initial density is far from tem. The metastable lifetimér) in such systems has been
correct. In practice, the method is better used iterativelyextensively studied analytically and by Monte Carlo simula-
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FIG. 1. Random walks in theng,s) state space for an>88
lattice. The dots show the accessible states. The broken line repre- Number of visits H
sents the pathway, scanned every 5000 Monte Carlo steps per spin:
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FIG. 2. Mean-square displacemeﬁ2 [in units of the (,s)
cell parametdras a function of timgin units of Monte Carlo steps
per spin(MCSS)], in the (m,s) plane(8X 8 lattice.

phase” (in which the magnetization is parallel to the applied
field). Small droplets are continuously created and destroyed
by thermal fluctuations. Belowabove a critical size, due to

the balance between the bulk and the interface energies, the
droplet has a high probability of vanishirgrowing. The

size of the critical droplet does not depend on the system'’s
size; it follows the ratio interaction and/or field. Thus the
decay properties clearly depend on the relative sizes of the
system and the critical droplet. Large systems have a higher
probability to possess nucleation centers and then the life-
time is inversely proportional to the number of sités)
Dynamical spinodal point: when varying the field, at a given
system’s size, two important regions are distinguished; at
small fields a single-dropletSD) feature of nucleation is
observed and at larger ones the nucleation is a multidroplet
(MD) process. The crossover field between the two features
was called the “dynamical spinodal poin{DSP [34], and
depends on temperature and system size. The decay process
has qualitatively different behaviors in the two regions. In
the SD region the average metastable lifetimas very long

but is inversely proportional to the system volume
[12,20,31-38 the decay approximately follows a Poisson

40000
(a) first Monte Carlo stage(b) fourth Monte Carlo stage. Bottom

(c): fourth Monte Carlo stage scanned every 500 Monte Carlo 20000

sweeps. 0

tions. Indeed, the field-theoretical droplet theory of Langer -60° 120

[31-33 was shown to be a valid approach by Monte Carlo
simulations in local Metropolis or Glauber dynam{&9].

These results, and some earlier ones, on the field and sys-
tem’s size dependence of the metastable lifetime of the Ising

model can be summarized through the following concepts. FIG. 3. Perspective view of the histogratin(m,s) (the number
(i) Critical droplet: the relaxation of the metastable phaseof visits of the macrostat¢ém,s}) provided by the fourth Monte
develops by nucleation and growth of droplets of the “stableCarlo stage for the 8 8 lattice.
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FIG. 4. Specific heat—fluctuations of energy per site with the
energy in temperature units—computed by the present method for
finite systems: &8, 16x 16; full line: Onsager solution.

process, so that the standard deviatiorr i comparable to
(m; thus the SD region was also called the “stochastic”
region. In the MD region{7) is quite short and independent
of system siz¢35,36,2Q while the standard deviation ofis
much smaller thar) so that it was called the “determinis-
tic” region. The DSP crossover depends on the system'’s size
and temperature. For “ultraweak” fieldsvithin the stochas-
tic region the critical droplet’s size may be larger than the
system size; the system is “metastable” as long as the whole FIG. 5. The microscopic Metropolis relaxation path MM from
system has not switched in the “stable” phase. In this caseéhe metastable phagall spins down at positive fiejd projected
the system’s behavior is similar to thatlat=0 where two over the two macroscopic variablesand m, is plotted over the
competing bulk phases coexi$ii2]. The corresponding probability surfaceP z(m,s) every 500 Monte Carlo steps per spin
crossover field was called the “thermodynamical spinodal.”for the 8x 8 systemh/T=0.0125 andl =0.88T c. (a) Linear scale.
(For a more detailed description on the subject see, e.g(b) A zoom in semilogarithmidIn) scale in order to display the
Refs.[37,12,22) details around the saddle point. Obviously, the system spends much
We have simulated, by Monte Carlo Metropolis dynamic,more time around the probability peak over the metastable phase’s
the relaxation paths projected in then) space, for the macrostates than around the saddle-point area.
nearest-neighbor planar Ising systems already considered
(sizes 8<8 and 24 24). It is worth showing one of these where P(m,s)/P(m) is the conditional probability for the
paths, plotted on the equilibrium distributid?,(m,s) sur-  system to be in thg¢m,s} point, with m being fixed before.
face. This is done in Fig. 5 and, from a simple glance, it carThis approximately gives the ridge line. Actually, we com-
be conjectured that the Metropolis path, in the minor probputed the ED and the ridge values, and checked that they
ability peak(i.e., near the metastable stabehaves stochas- were reasonably close to each other, except for small sizes
tically; then, near and mainly after the saddle point, it be-(L<8) or for paths really near the edge of the allowed space
haves more or less deterministically, before endingstate(i.e., for low temperaturgs
stochastically again, in the major probability peak, i.e., inthe We show in Fig. 6(model sizeL =8) how the ED path
stable state. depends on temperature: the higher the temperature, the
A second major feature displayed by Fig. 5 is that the pattsmaller the correlations when the system escapes from the
seems to follow a line of high probability, i.e. a ridge of the metastable state. Simple calculations on @yshow that the
probability surface. For a quantitative investigation of theED path does not depend on the field value; only the position
problem, we have computed the following quantities. of the saddle point moves along the path, from large negative
(i) The mean metropolifMM) path, obtained by averag- m values(large field$ to smallm values(weak field3. This
ing, for eachm value, thes values given by typically 1000 is shown in Fig. 7, which displays the valuegém,s,;,) on the

e

independent Metropolis runs. ED path for differenth values.

(ii) The equilibrium distributionED) path, conveniently Then the comparison between MM and ED paths, shown
obtained by a similar averaging of values based on the in Figs. 8 and 9, can be interpreted, distinguishing three field
equilibrium distribution regions with respect to the saddle-point position on the ED

surface:(1) The fields for which the saddle point is near
S_m:E s.P4(m,s)/P4(m), (9) m=0, corresponding teveakfields in the stochastic region

far from the DSP crossove(2) Fields whose saddle point
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FIG. 6. Equilibrium distribution(ED) relaxation paths from the
statem=—N to m=0 plotted for five temperature value$/Tc  gp rigge path, plotted as a function of, for four fields: h/T

=_0.22, 0.44, 0.66, 0.88, and 0.9from full squares to open =0.05, 0.1, 0.15, and O.2from crosses to open squareat T
circles; the ED paths do not depend on the field. The dots corre— g ggre. The arrows at the minimum of these functions corre-
spond to the{s,m; states. AtT=0.22Tc the path passes by the gonq o the saddle points: they move towaret —N as the field
edge of the space corresponding to the minimum of the interfacg,eases.

between the two phases, i.e., the lower energy possible during the

growing process; at this temperature there is only one droplet growgeparture systematically directed toward lower correlation
ing with the minimum of the interface—a circular droplet. When macrostates.

the temperature increases the system optimizes between low-energy The abhove observations confirm that the ED description is

macrostates and highly degenerated ones; i.e., the paths approagly| valid in metastable phase regions—i.e., weak fields or in
the highly degenerated center of the macrostate space.

FIG. 7. The equilibrium probabilities of thign,s} points on the

105 T T
stays betweem= —N andm=0, corresponding tinterme- oo (sm) states -
diate values laying in a large region around the DSP cross- ED path —
over. (3) Fields for which the saddle point vanishes on the oo MM path -

ED surface which correspond strongfields far behind the
crossover in the deterministic region. We establish the DSPm
crossover field at the point where the standard deviation of
the lifetime stays as half the lifetime as in Rg22]. The
results are the following.

(i) Weak and intermediate fieldStarting from the meta-
stable state, both paths closely coincide at the beginning anc
diverge very weakly(but progressively when approaching
the saddle pointFig. 8), where relaxation becomes less sto-
chastic(Fig. 5 However, before the saddle poiffor these
fields it is neam=0) the differences are small and decrease
in reduced unitgs divided by the total number of values:
2N) as the system’s size increases. For these weak fields w
can finally conclude that the escaping paths from the meta-
stable phase can be deduced analytically from the ED sur-
face. As the field increases a slight departure from the ED Total magnetization m
predictions toward lower correlation statédsw-s values
starts closer tan=—N, and.incre_ases faster and faster; we ._ 4t T=0.88rc and h/T=0.15 (dashed ling and the corre-
observe that the progressive divergence between the onding equilibrium distributioED) path (full line), plotted for
paths follows the displacement of the saddle point fromye gx g system. The mean Metropolis path is calculated by aver-
m=0 tom=—N. In other words, a crossover from stochas- aging over 16 escapes from the metastable state. The arrow points
tic to deterministic relaxation is observed around the saddlegyt at the saddle point of the ED surface; the difference between the
point position of the ED surface. It corresponds to the crosspaths remains very small, but is already sizable before the saddle
over from a metastable behavior to an unstable one. point. Note that this systematic regular departure toward high-

(i) Strong fieldsThe relaxation is deterministic all along; density macrostates is in large excess of the various statistical scat-
the paths strongly diverge on increasing fielffgy. 9), the  ters involved in the calculations.

Total correlatio

FIG. 8. Mean MetropolisMM) relaxation path froorm= —N to
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FIG. 9. Mean MetropolisMM) paths for the 2% 24 lattice
plotted for relatively strong fieldgwith respect to theHpgp): FIG. 10. The equilibrium distributio®(m) (dashed ling and
h/T=0.075 (dashed ling and h/T=0.25 (dot-dashed line at  the equilibrium probabilities of thes(m) points on the ED path
T=0.88Tc. The full line shows the corresponding ED path; the ED (full line), plotted (both on a log, scale as a function ofm for
surface has no saddle point at these fields. h/T=0.25,T=0.88Tc, for the 8x 8 lattice. The minimum oP(m)
the beginning of the relaxation path for intermediate fields—ﬁiearly d'ﬁers.from the minimum oP(m,Smg) corresponding to

. . . . the saddle point of the ED surface.
while there is no clear-cut border for the metastable region in
the macrostate space. In that sense, the conjecture mentioned_.

in Sec. | about a Penrose-Lebovitz formalism of the metaln Fi9- 9 where are shown two MM paths for fields below

stable states even in systems with short-ranged interactiorfé!d P&yonH . It is known[38] that dynamical properties
[10,15 is supported. It is worth noting that the accuracy off@r from equilibrium are highly dependent on the type of
the ED description is highly related to the stochastic naturdlynamic, e.g., the choice of the transition probabilities satis-

of the escape from the metastable phase. The stochastic riying the detailed balance condition. It would be interesting
ture is due to the presence of the energy barrier: the highé

p study other microscopic dynamics—Glauber, heat bath, or

the barrier, the rarer the fluctuations leading to escape froffluster dynamics like Wolff or Swendsen-Wafi#|—from

the metastable phase. In such a case the system has mJff same viewpoint. .

time, before it escapes, for exploring its configuration space !t IS worth noting that the saddle point depends on the
[degeneracyN(s,m) of the {s,m} macroscopic statdsob- dlmens_lon _chosen for the Elhypepsurface. Th_ls is |!Ius—
taining “knowledge” of the macroscopic ED as in the equi- Fated in Fig. 10, where then value of a two-dimensional
librium phase. The progressive crossover from stochastic t§2ddle-point position and the corresponding one-dimensional
deterministic, i.e., from metastable to unstable regions of th€X{remum value are compared. Consequently, the field value

macrostate space, is merely due to the progressive IoweriH;Qr which the saddle point vanishése., there are no longer
of the free energy barrier. The departure of MM paths islT€€ €nergy barriers beyond that fiptiepends on the dimen-

systematically directed toward high-degenerated macrostat&on of the projected probabilitifree energy. Thus the sys-
(the density’s maximum is in the center of the macrostatd€™ behavior

is still stochastic even when the two-
spacé: when the barriers are low, it may be easier to escap

dimensionial probability surface no longer has a secondary
passing by neighboring high-density states despite highepeak: the latter should still exist in higher-dimensional ED
barriers.

spaces. Then another prospect would be obtaining higher-
It is clear that the ED description falls down for strong

dimensional densities of states, e.g., including the number
fields (h being of the same magnitude &5 where there are and (or) the size of the clusters, which are important in
no more energy barriers for the single spin-flip: the system i

Jucleation phenomena. Also, for a more quantitative evalu-
prepared in an unambiguous unstable phase corresponding3§ON of the ED description, a detailed study of the correla-

a purely out of equilibriumfeature, and leading to classical tlon beetween the tweor more dimensional saddle points

deterministic relaxation. In fact, if the energy decreases agnd the DSP introduced in R¢B4] should be instructive.
each spin-flip proposal toward the stable phase, then all flips

are accepted by the Metropolis dynamic and the behavior is IV. PERSPECTIVES AND DISCUSSION TOWARD

purely deterministic. It is t_he case for fields Igrger than 8 A MULTIVARIABLE MACROSCOPIC DYNAMIC
crossover valuéd ..~ zJ, with z the number of interacting

neighbors. Then the system merely follows the higher den- Concerning the first slow part of the relaxation from the
sity N(m,s) path in the macrostate space, irrespectively ofmetastable state, the above macrostates being well described
the field and temperature. The latter behavioherent to the by the ED, it is appealing to substitute the Markovian micro-
absence of the energy barrigis also observed in presence scopic local dynamic over theN2configurations by a mac-

of weak energy barriers, i.e. for fields smaller thay,,, as  roscopic, still Markovian one over the~N?/2 macrostates
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{s,m}. In other words, when the system has sufficient time 3000 - - - : :
L=8 (Micro-dynamic) ——

to explore all the configuration space associated with the
macrostates defined here, it can be assumed that the detaile 2500 L
balance condition is also satisfied by the macrostggs}.

The fact that the last arguments are much less valid for the
last and fast part of the relaxation is not of importance for the g
mean metastable lifetime, which is dominated by the sIow:
part of the relaxation. This projection from a microscopic to 1500 |
macroscopic dynamic was previously proposed and checkecg
in Ref.[22] for only one variable, the order parameter It ® 1000 |
was just mentioned there that such a macroscopic dynamic is3
an exact one only for long-ranged interaction equivalent-

L=8 (Macro-dynamic) --—-—-

L=24 (Micro-dynamic} - 1

{Macro-dynamic) -----

2000

neighbor model§39], which are also called mean-field mod- 500 -

els. For short-ranged interaction systems this is only an ap- e

proximation; the exact projection of the microscopic 0 - . e S
Markovian dynamic over macroscopic variables has no rea- 0 30

son for being still Markovian. The reason is that, for the Applied field h (K)

latter systems, the macrostates defined by the order param- f|G. 11. The average lifetime of the metastable stattaxation
eterm contain nonequivalent microscopic configurations—time from m=—N to m=0) obtained by Monte Carlo simulations
they are equivalent only in the equivalent neighbor model—with the microscopic Metropolis dynamic and with the macroscopic
and the latter assumption leads to neglecting memory effedletropolis dynamic, plotted as a function of the applied field, for
propagation from thedifferent microscopic configurations the 8x8 lattice (upper curves and the 2424 lattice (lower
corresponding to the same valueraf Hence, there it was curves both atT=0.88Tc. The field varies in the stochastic region.
called a mean-field dynamic. As was argued in that workAll values are calculated by averaging over 1000 independent paths.
[22], the macroscopic dynamic for short-ranged interactiong'he time scalegin units of Monte Carlo steps per site MCSS are
may be a good approximation for slow variables suchnas adapted to fit each other at the lower field value. The field is in
andE in the metastable statsee also Refg40,41)). Obvi-  energy, i.e., temperature, units.

ously, a macroscopic dynamic over the variablesand s,

being equivalent tan andE (Sec. Il A, stands no less as an isfying Eq. (10) (i.e., there is not only one stochastic dy-
approximation of the underlying microscopic dynamic thannamic leading to equilibrium we choose simple Metropolis-
the one-variable macroscopic dynamic of Reg]: different  type matrix elements

microscopic configurations belonging to the same macrostate

may lead to very different features for the future. However, ) P(m’,s")

there is much less information neglected by the macrostates W({m,s},{m’,s’})=m|n[ 1, m] (113
{s,m} than by those defined only by, the more so because '
we also define the macrostates by the energy. Nevertheless , , _
the supplementary information from the microscopic dropletWith m’'=m=2 ands’=s*k, wherek=0,%4,%8,
picture, coming from the variabke is no more than the total

length of the interface between up- and down-spin areas. _1_ r o
The complete knowledge of the macrostate probabilities W(im.s.{m,s}) =1 {m’,s'}zsﬁ{m,s} W({m,s}{m",s’}).
enables establishing the balance condition (11b
P({s,mhoW(k,k")=P({s,mp)W(k’ k) (10 Solving the macroscopic dynamic by the Monte Carlo

method, we obtained both lifetimes and relaxation paths,

corresponding to a Markovian dynamic. The interest of thdeading to the following observations.
latter lies in the fact that it leads to very simple calculations: (i) The microscopic and macroscopic dynamics paths
in principle, calculating all the moments of the metastablesimilarly compare to the two-dimensional ED path, although
lifetime distribution can be reduced to the inversion of¥e the macroscopic dynamics depends only on the two variables
matrix [42,22, satisfying Eq.(10) (the latter is anM X M s and m of the above equilibrium distribution. This means
matrix, whereM is the number of statgsWhile the corre- that the progressive departure from the ED description is
sponding matrix of the microscopic dynamics is ad'x2N really inherent to the metastable character of the initial state;
matrix—and then one can only do Monte Carlothatis, to the escape from the quasistationary stationary situ-
simulations—the matrix inversion is possible for the presentation corresponding to the metastable phase toward the non-
macroscopic dynamic for which the number of macrostatestationary, out-of-equilibrium situation.
{s,m} is ~N?/2. Then the lifetime calculation, which no (i) The comparison between the relaxation paths from the
longer involves a simulatiorfequivalent to an integration microscopic and macroscopic dynamics confirms both as-
over time, is independent of the lifetime value. sumptions of phenomenological macroscopic kinetic theories

In order to keep the same local dynamic, the permitted43,31-33 (for a review, see, e.g., Reff44-464 and the
transitions between macrostates are restricted to single spiasults of previous work which compare between different
flips, i.e., m values differ by =2 ands values differ by = microscopic dynamicg20] and between microscopic and
+8+4 or 0. There is not a unique transition matikk sat-  one-variable macroscopic dynami&?]. That is, when the
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macroscopic relaxation is very slow with respect to the timefrom a metastable state. The projected relaxation paths are
scale of the dynamic detai(as it is for the first and long part directly obtained by a projected ED, with excellent accuracy,
of the relaxation path the process is weakly dependent onand the associated stochastic macroscopic dynamics is a
the type of dynamic. Indeed, in phenomenological theories igood approximation of the exact projection of the micro-
is assumed that in this case the details of the dynamics ameopic one. Of course, the ED description fails when the
averaged, and the behavior of the system is only governed bgystem relaxes from an unstable state. These results are
free-energy changdg4]. In addition, we show that the first highly encouraging for investigating metastable states via an
long part of the decay nearly fits the equilibrium distribution. analytical-like method, which is free from the unavoidable

(iii) In a second step we have investigated the lifetimeslimitations of the microscopidtime integrationlik¢ Monte
the computed mean lifetime values, given by the micrody-Carlo simulations. The determination of relaxation paths
namics and macrodynamics, as a function of the appliednay be very useful for systems with more than one meta-
field, are reported in Fig. 11. The microdynamics and macstable phaséthe Blume-Capel model for a three-state sys-
rodynamics compare well for the larger size, where the ECtem) so as to predict the probabilities for visiting the states
surface is steep around the ridge path. In this case, due to thdth different orderings.
presence of high-energy barriers, the scatter of microscopic
relaxatlon paths, dur_lng the first and long part of t_he decay, is ACKNOWLEDGMENTS
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