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Monte Carlo entropic sampling for the study of metastable states
and relaxation paths

Isidor Shteto, Jorge Linares, and Franc¸ois Varret
Laboratoire de Magne´tisme et d’Optique, CNRS, Universite´ de Versailles, St. Quentin en Yvelines, 45 Avenue des Etats Unis,

F78035 Versailles Cedex, France
~Received 24 June 1997!

We present a continuous extension of the recent Monte Carlo entropic method for sampling a density of
states restricted in dimensionless macroscopic parameters. The method performs a random walk through a
two-dimensional macrostate space and provides complete information in the form of continuous functions of
the system’s coupling constants. For the example of an Ising system, we project relaxation paths from Monte
Carlo Metropolis dynamic over the two-dimensional state space and compare them with a ‘‘most probable
path’’ associated with the equilibrium distribution, derived from the density of states. We observe a close
agreement between them in the stochastic regime, i.e., before the system escapes from the metastable state. We
establish a Markovian macroscopic dynamic over the two macroscopic parameters and we discuss it with
respect to the Metropolis microscopic dynamic.@S1063-651X~97!01511-0#

PACS number~s!: 64.60.My, 05.50.1q, 05.70.Ln, 64.60.Qb
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I. INTRODUCTION

It is very interesting, for the study of the equilibrium an
nonequilibrium properties of a system, to access its fluct
tions. It is now well established that equilibrium fluctuatio
play an important role in nonequilibrium thermodynamic
They are central to an understanding of nucleation phen
ena and metastable states related to them. Metastable s
are very common in nature, and a very large class of ap
ently stable states are actually metastable but very long liv
Many crystallographic phases associated with struct
phase transitions~e.g., diamond! are metastable state wit
astronomical lifetimes. Experimentally these states are
served near first-order phase transitions in different conte
e.g., parts of hysteresis loops associated with the magne
tion reversal in a ferromagnet or with phase separation
alloys, supercooled vapor, and superheated liquid, switch
behavior in ferroelectric films or bistable molecular syste
@1–5#.

The question of the existence and properties of metast
states still remains a challenge to the theoretical physic
Metastability is obviously, in almost all real systems, a
netic phenomenon, except for some infinitely long-liv
metastable phases in systems with weak long-range inte
tions. It was demonstrated in the infinite-system formali
that one-phase systems with short-ranged interactions ca
support infinite long-lived metastable states@6–9#. If the in-
teractions are short ranged only a finite-energy fluctua
~sometimes very large! is needed in order for the system
escape from the metastable phase: nucleation barriers a
nite even in the thermodynamic limit. However, the lifetim
may be very long even in a short-ranged interaction sys
@10,11,9,12,13#, and as long as the system remains ‘‘tru
metastable’’~i.e., does not decay!, it is possible to perform
measurements of thermodynamic quantities such as spe
heat or susceptibility. These ‘‘equilibrium’’ properties lea
to an interesting fundamental challenge aimed at describ
metastable states from a statistical physics point of vi
561063-651X/97/56~5!/5128~10!/$10.00
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Statistical mechanics has a well-defined ‘‘canonical’’ form
ism for obtaining the equilibrium properties of macroscop
matter, and also, to a lesser extent, the nonequilibrium pr
erties of systems close to equilibrium. There is, however,
such formalism for metastability and nucleation in finite sy
tems, only a collection ofad hoc methods, most of them
approximate, for particular problems. The only rigoro
treatment of Penrose and Lebovitz@14# holds for systems
with weak long-ranged interactions~liquid-gas transition!,
where the metastable phase is formally described in term
restricted equilibrium ensembles excluding microsta
which dominate at equilibrium~for a detailed discussion
about the relevance of different treatments, see Ref.@15#!.
For short-ranged models, there is no unique way to const
such restricted ensembles, i.e., to define a metastable
figuration space. Nevertheless, the arbitrary nature of the
striction has no real practical incidence on the deduced p
erties of the metastable state, as long as the latter are
long lived@10,15#. Hence, for short-ranged models the abo
treatment is only as a conjecture, suggesting that a sys
remaining in a metastable state samples the associated
figurations according to their relative weight in the partitio
function.

Different efforts have been made to demonstrate the
evance of equilibrium properties in describing the relaxat
of a metastable state. The relation between nucleation b
ers and the shape of the restricted free energyF(m) in finite
systems have been studied by Schulman@16# and also by
Binder and co-workers@17–19#. Nucleation rates with dif-
ferent dynamics—cluster Swendsen-Wang dynamics or lo
Metropolis-like dynamics ~see Refs. @20,21#, and refs.
included!—pointed out that metastable properties which a
functions of equilibrium orquasiequilibriumbulk quantities
are the same in both dynamics. Recently, a detailed stud
the relaxation of metastable phases in an Ising ferromag
@22# showed that the restricted bulk free energyF(m) pro-
vides the essential characteristic behaviors of the latter w
used to construct a local macroscopic mean-field-like
namic.
5128 © 1997 The American Physical Society
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56 5129MONTE CARLO ENTROPIC SAMPLING FOR THE STUDY . . .
In this paper, we mainly focus on the possibility of d
scribing the metastable phase fluctuations by equilibrium
tributions~ED’s!. The above considerations suggest that a
dynamic which obeys the detailed balance statement, in
dition to giving the correct equilibrium properties, wou
also give the correctquasiequilibrium properties for the
metastable state. Therefore, we can expect that the m
stable phase’s microscopic configuration space will be
plored according to ED’s. If we project the latter over som
macroscopic variables, say total magnetizationm and energy
E of the well-known Ising model, it turns out that the two
dimensional macroscopic configuration space resulting fr
this projection would be explored, obeying the correspo
ing macroscopic distributionP(m,E).

The first advantage of a two-variable macroscopic stat
the possibility of vizualizing relaxation paths. We analy
the possibility that not only small fluctuations but also lar
fluctuations, contributing to the escape from the metasta
phase, may be described by ED’s. Typically, we think th
the comparison between the Metropolis dynamic’s tw
dimensional relaxation paths from the metastable phas
the stable phase, and the equilibrium distribution surface
that system may be very informative. Hence, we investig
how long it is possible to have an information on the lon
range equilibrium fluctuations in a reduced space, only
examining the whole spectrum of the projected ED’s in t
space. Then, a mean-field-like Markovian macroscopic
namics may be constructed as an approximation of the e
projection of Markovian microscopic dynamics—
Metropolis, Glauber, heat bath—over the macroscopic st
$m,E%, as is done in Ref.@22# for a one-dimensional spac
described byF(m). A quantitative comparative study of th
approximation’s quality for the one-and two-variable mea
field-like dynamics is beyond the scope of the present stu
We just aim to point out the possible correlations betwe
the quality of the macroscopic dynamic approximation a
the properties of the ED surface.

The knowledge of the probability surface implies a co
plete exploration of the reduced state space. This may
done exactly for small systems~up to 636!, just by enumer-
ating exhaustively all microscopic configurations; for larg
ones, recent new Monte Carlo sampling methods have b
very successful. We use the entropic sampling method@23#
that we adapted for sampling and storing a two-dimensio
density of statesD(E,m). This is reported in Sec. II, wher
we describe, for the example of an Ising-like model, how
obtain a density of states which is independent of the Ham
tonian’s parameters. Then we show how relaxation pa
may be predicted from ED’s.~Sec. III!, and in Sec. IV we
briefly define and apply a two-variable macroscopic dynam
before discussing the results in the perspective of multiv
able macroscopic dynamics as approximations of the mi
scopic dynamic.

II. EQUILIBRIUM DISTRIBUTIONS
BY MONTE CARLO CALCULATIONS

It is clear that the Monte Carlo Metropolis algorithm~see,
e.g., Ref.@24#! is not suited to access the whole spectru
distribution of observable features of the system. It only
plores the most probable configurations, implying sho
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range fluctuations. Several variants of the Metropolis al
rithm have been proposed@25–28# to overcome the problem
basically consisting of exploring several areas of the s
space, by using several sets of coupling constants~tempera-
ture, interactions, energy gaps, etc.!. They face serious diffi-
culties for connecting the separate pieces of informati
mostly in the case of high-energy barriers. Recently, L
@23# introduced a biased Monte Carlo method, the so-ca
‘‘entropic sampling method,’’ which was shown to b
equivalent to the previous Berg’s Multicanonical meth
@29,30,22#. The Lee entropic sampling actually samples t
density of states, and since all areas of the state space
visited, the necessary information for all temperatures is
tained in a single sampling procedure.

In this paper we use the entropic sampling method
storing a two-variable density of states. This is done for
simple example of an Ising-like system under a field, w
unique and constant nearest-neighbor interactions.
whole spectrum of the statistical distribution is derived a
continuous function of the model parameters.

A. Multidimensional densities of states
for complete equilibrium descriptions

Starting from the well-known Hamiltonian, withs i561
eigenvalues

Ĥ52h(
i

ŝ i2J(
^ i , j &

ŝ i ŝ j , ~1!

the total energy is expressed in terms of dimensionless q
tities, proportional tom5(s i and the nearest-neighbor co
relations5(s is j :

E52hm2Js. ~2!

The canonical partition function is expressed in terms of
dimensionless quantities,

Zb5(
m,s

N~m,s!exp@2b~2hm2Js!#, ~3!

with b51/kBT, and whereN(m,s) is the number of con-
figurations for a given set of values, and$m,s% is actually the
degeneracy of the macrostate$m,s%. N(m,s) is of central
interest here, and much macroscopic thermodynamical in
mation can be derived from it. In a continuous approxim
tion, it should be substituted by the restricted density
statesD(m,s); for convenience,N(m,s) here will be termed
the density of states. The degeneracy of the energy levelE is

N~E!5 (
m,s;E

N~m,s!, ~4!

where the sum is carried on all$m,s% macrostates of given
energyE. The corresponding equilibrium probabilities are

Pb~m,s!5N~m,s!exp~2b~2hm2Js!/Zb . ~5!

The restricted partition functionZb(m) and the resulting
probabilitiesP(m) are then derived:
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Zb~m!5(
s

N~m,s!exp@2b~2hm2Js!#, ~6!

Pb~m!5Zb~m!/Zb . ~7!

In addition, all macroscopic equilibrium quantities, e.
specific heat or susceptibility, can be derived fromN(m,s)
analytically for any set of parameter values and any temp
ture. The method is, in principle, easily extended to m
complicated Hamiltonians: the basic idea is that each ene
term in the Hamiltonian is represented by a macroscopic~di-
mensionless! variable; the state space is constructed alo
these macroscopic variables. Also, in the case of large
tems, the state space can be gridded, and the method fo
in proper terms of the density of states. An attractive feat
of the method is that the sampling is performed only on
for a system of given size and interaction topology, even
various degeneracies attributed to the spin states, or w
switching from ferromagnetic to antiferromagnetic intera
tions.

B. Entropic sampling for bidimensional density of states

In this section we describe how the biased Monte Ca
sampling method, called entropic sampling@23#, is used to
calculate the density of states, i.e. the microcanonical
tropy, and we give some details on how it runs and c
verges.

The entropic sampling method@23# relies on the idea tha
a Monte Carlo~MC! procedure yields any desired distrib
tion P, provided that the same distribution is introduced a
bias in the detailed balance equation. Such a property der
from the properties of the Markov chains, irrespective of
actual physical process. To achieve a complete explora
of the state space, a biased method has to favor config
tions belonging to weakly degenerate macrostates~small
density of states!, and to dampen those belonging to t
highly degenerate macrostates~large density of states!; the
latter are those sampled by a simple sampling or by an
portance sampling~the Metropolis algorithm! at high tem-
peratures. The biasing probability, which is suited for
uniform exploration of the state space, merely is the inve
of the restricted density of states. Since the latter isa priori
unknown, a good starting approximation, as suggested
Ref. @23#, is the density of states of a similar system
smaller size, previously determined in some way, and t
scaled for the larger size system. The process can be
iteratively, and we termNi(m,s) the density of states ob
tained after iterationi . Then, usingNi(m,s) as a bias, a MC
sampling is run; it is termed a ‘‘Monte Carlo stage,’’ an
yields a histogram of the frequency of the macrosta
Hi(m,s). Once corrected for the bias, the resulting restric
density of states is obtained as

Ni 11~m,s!;Ni~m,s!.Hi~m,s!. ~8!

It must be pointed out that all involved quantities are
mensionless, e.g., there is no temperature~as in Ref.@23#! at
this stage of the method. Equation~8! may yield at once, i.e.
through a single MC stage, the correct result, for a gr
number of MC sweeps, even if the initial density is far fro
correct. In practice, the method is better used iterative
,
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with, according to Eq.~8!, the flat character of the histogram
H(m,s) as a convenient convergence criterion.

As for the numerical limitations of the method, it is cle
that they mainly lie in the random procedure. We observ
that the relative scatter of the histogram after a given M
stage depends both on the quality of the initial density d
tribution and on the number of MC sweeps per macros
for a stage; the total number of macrostates is proportiona
Np, with N the number of spins, andp the number of dimen-
sionless parameters. An optimum strategy consists of star
with short stages and then increasing the length of the n
stage if either the quality of the histograms~the mean ‘‘flat-
ness’’! is not improved or the number of visited macrosta
has decreased. As an example, for the 32332 system, we
started with 104 MC sweeps, and finished the calculatio
with the three final MC stages from 8 to 153107 MC stages;
at the final stage the resulting histograms presented a m
standard deviation of 2%.

It is clear that calculations for larger systems are
longer reasonable if one continues to project configurati
over the discrete set of the$s,m% values, because of theN2

law for the number of macrostates. Using an IBM RS/60
560 computer with 100 megaflops, the reasonable prac
limit seems to be around 1000 spins for the present exam
where we want to obtain a two-parameter information;
maximum size of the planar system is then 32332, giving
498 252 macrostates, reduced to 249 126 us
D(2m,s)5D(m,s) symmetry. For comparison, the mult
canonical ensemble Berg’s method can treat up to 64364,
but has to be repeated for each temperature, as in Ref.@22#.
For larger sizes, one could proceed in terms of a continu
density of states with a grid state space in order to limit
number of macrostates to be sampled. However, the gr
intervals along the energy dimension must not be large c
pared tokBT.

We illustrate the method with an 838 square planar Ising
system. The initial density has been obtained via a Gray c
on a 434 system. In Fig. 1 we show the random walk of t
sampling algorithm; the iterative process included four M
stages, each made of 106 MC stages. In Fig. 2 we plot the
average squared displacement, in the fourth MC stage,
function of the number of MC stages, i.e., as a function
the elapsed time. It is concluded from both figures that
desired uniform exploration of the state space has been
rectly achieved, as a random, diffusionlike, walk, through
converging iterative process. In Fig. 3 we present the his
gram provided by the fourth MC stage. As desired, it is re
sonably flat. As a check of the reliability of the method, w
show in Fig. 4 the specific heat computed for several squ
planar systems of finite size~L58 and 16,h50!, which
compare quite well to the exact Onsager solution.

III. EQUILIBRIUM PROBABILITY SURFACE
AND RELAXATION FROM METASTABLE STATES

We focus here on the properties of metastable state
ferromagnetic systems with short-range interactions, p
pared in a total magnetization configuration opposite to
applied field. Again we use the nearest-neighbor Ising s
tem. The metastable lifetimêt& in such systems has bee
extensively studied analytically and by Monte Carlo simu
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56 5131MONTE CARLO ENTROPIC SAMPLING FOR THE STUDY . . .
tions. Indeed, the field-theoretical droplet theory of Lang
@31–33# was shown to be a valid approach by Monte Ca
simulations in local Metropolis or Glauber dynamics@20#.

These results, and some earlier ones, on the field and
tem’s size dependence of the metastable lifetime of the Is
model can be summarized through the following conce
~i! Critical droplet: the relaxation of the metastable pha
develops by nucleation and growth of droplets of the ‘‘sta

FIG. 1. Random walks in the (m,s) state space for an 838
lattice. The dots show the accessible states. The broken line re
sents the pathway, scanned every 5000 Monte Carlo steps per
~a! first Monte Carlo stage;~b! fourth Monte Carlo stage. Bottom
~c!: fourth Monte Carlo stage scanned every 500 Monte Ca
sweeps.
r

ys-
g

s.
e
e

phase’’~in which the magnetization is parallel to the applie
field!. Small droplets are continuously created and destro
by thermal fluctuations. Below~above! a critical size, due to
the balance between the bulk and the interface energies
droplet has a high probability of vanishing~growing!. The
size of the critical droplet does not depend on the syste
size; it follows the ratio interaction and/or field. Thus th
decay properties clearly depend on the relative sizes of
system and the critical droplet. Large systems have a hig
probability to possess nucleation centers and then the
time is inversely proportional to the number of sites.~ii !
Dynamical spinodal point: when varying the field, at a giv
system’s size, two important regions are distinguished;
small fields a single-droplet~SD! feature of nucleation is
observed and at larger ones the nucleation is a multidro
~MD! process. The crossover field between the two featu
was called the ‘‘dynamical spinodal point’’~DSP! @34#, and
depends on temperature and system size. The decay pro
has qualitatively different behaviors in the two regions.
the SD region the average metastable lifetime^t& is very long
but is inversely proportional to the system volum
@12,20,31–36#; the decay approximately follows a Poisso

re-
in:

o

FIG. 2. Mean-square displacementd̄r 2 @in units of the (m,s)
cell parameter# as a function of time@in units of Monte Carlo steps
per spin~MCSS!#, in the (m,s) plane~838 lattice!.

FIG. 3. Perspective view of the histogramH4(m,s) ~the number
of visits of the macrostate$m,s%! provided by the fourth Monte
Carlo stage for the 838 lattice.
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process, so that the standard deviation oft is comparable to
^t&; thus the SD region was also called the ‘‘stochasti
region. In the MD region,̂t& is quite short and independen
of system size@35,36,20# while the standard deviation oft is
much smaller than̂t& so that it was called the ‘‘determinis
tic’’ region. The DSP crossover depends on the system’s
and temperature. For ‘‘ultraweak’’ fields~within the stochas-
tic region! the critical droplet’s size may be larger than t
system size; the system is ‘‘metastable’’ as long as the wh
system has not switched in the ‘‘stable’’ phase. In this c
the system’s behavior is similar to that ath50 where two
competing bulk phases coexist@12#. The corresponding
crossover field was called the ‘‘thermodynamical spinoda
~For a more detailed description on the subject see, e
Refs.@37,12,22#.!

We have simulated, by Monte Carlo Metropolis dynam
the relaxation paths projected in the (m,s) space, for the
nearest-neighbor planar Ising systems already consid
~sizes 838 and 24324!. It is worth showing one of these
paths, plotted on the equilibrium distributionPb(m,s) sur-
face. This is done in Fig. 5 and, from a simple glance, it c
be conjectured that the Metropolis path, in the minor pro
ability peak~i.e., near the metastable state! behaves stochas
tically; then, near and mainly after the saddle point, it b
haves more or less deterministically, before endi
stochastically again, in the major probability peak, i.e., in
stable state.

A second major feature displayed by Fig. 5 is that the p
seems to follow a line of high probability, i.e. a ridge of th
probability surface. For a quantitative investigation of t
problem, we have computed the following quantities.

~i! The mean metropolis~MM ! path, obtained by averag
ing, for eachm value, thes values given by typically 1000
independent Metropolis runs.

~ii ! The equilibrium distribution~ED! path, conveniently
obtained by a similar averaging ofs values based on th
equilibrium distribution

s̄m5(
s

s.Pb~m,s!/Pb~m!, ~9!

FIG. 4. Specific heat—fluctuations of energy per site with
energy in temperature units—computed by the present method
finite systems: 838, 16316; full line: Onsager solution.
’
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where P(m,s)/P(m) is the conditional probability for the
system to be in the$m,s% point, with m being fixed before.
This approximately gives the ridge line. Actually, we com
puted the ED and the ridge values, and checked that t
were reasonably close to each other, except for small s
(L,8) or for paths really near the edge of the allowed sp
state~i.e., for low temperatures!.

We show in Fig. 6~model sizeL58! how the ED path
depends on temperature: the higher the temperature,
smaller the correlations when the system escapes from
metastable state. Simple calculations on Eq.~9! show that the
ED path does not depend on the field value; only the posi
of the saddle point moves along the path, from large nega
m values~large fields! to smallm values~weak fields!. This
is shown in Fig. 7, which displays the valuesP(m,s̄m) on the
ED path for differenth values.

Then the comparison between MM and ED paths, sho
in Figs. 8 and 9, can be interpreted, distinguishing three fi
regions with respect to the saddle-point position on the
surface:~1! The fields for which the saddle point is ne
m50, corresponding toweakfields in the stochastic region
far from the DSP crossover.~2! Fields whose saddle poin

or

FIG. 5. The microscopic Metropolis relaxation path MM fro
the metastable phase~all spins down at positive field!, projected
over the two macroscopic variabless and m, is plotted over the
probability surfacePb(m,s) every 500 Monte Carlo steps per sp
for the 838 system;h/T50.0125 andT50.88Tc. ~a! Linear scale.
~b! A zoom in semilogarithmic~ln! scale in order to display the
details around the saddle point. Obviously, the system spends m
more time around the probability peak over the metastable pha
macrostates than around the saddle-point area.
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56 5133MONTE CARLO ENTROPIC SAMPLING FOR THE STUDY . . .
stays betweenm52N andm50, corresponding tointerme-
diate values laying in a large region around the DSP cro
over. ~3! Fields for which the saddle point vanishes on t
ED surface which correspond tostrongfields far behind the
crossover in the deterministic region. We establish the D
crossover field at the point where the standard deviation
the lifetime stays as half the lifetime as in Ref.@22#. The
results are the following.

~i! Weak and intermediate fields. Starting from the meta-
stable state, both paths closely coincide at the beginning
diverge very weakly~but progressively! when approaching
the saddle point~Fig. 8!, where relaxation becomes less st
chastic~Fig. 5! However, before the saddle point~for these
fields it is nearm50! the differences are small and decrea
in reduced units~s divided by the total number ofs values:
2N! as the system’s size increases. For these weak field
can finally conclude that the escaping paths from the m
stable phase can be deduced analytically from the ED
face. As the field increases a slight departure from the
predictions toward lower correlation states~low-s values!
starts closer tom52N, and increases faster and faster; w
observe that the progressive divergence between the
paths follows the displacement of the saddle point fr
m50 to m52N. In other words, a crossover from stocha
tic to deterministic relaxation is observed around the sad
point position of the ED surface. It corresponds to the cro
over from a metastable behavior to an unstable one.

~ii ! Strong fields.The relaxation is deterministic all along
the paths strongly diverge on increasing fields~Fig. 9!, the

FIG. 6. Equilibrium distribution~ED! relaxation paths from the
statem52N to m50 plotted for five temperature values:T/Tc
50.22, 0.44, 0.66, 0.88, and 0.97~from full squares to open
circles!; the ED paths do not depend on the field. The dots co
spond to the$s,m% states. AtT50.22Tc the path passes by th
edge of the space corresponding to the minimum of the inter
between the two phases, i.e., the lower energy possible during
growing process; at this temperature there is only one droplet gr
ing with the minimum of the interface—a circular droplet. Whe
the temperature increases the system optimizes between low-e
macrostates and highly degenerated ones; i.e., the paths app
the highly degenerated center of the macrostate space.
-

P
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departure systematically directed toward lower correlat
macrostates.

The above observations confirm that the ED descriptio
still valid in metastable phase regions—i.e., weak fields o

-
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FIG. 7. The equilibrium probabilities of the$m,s% points on the
ED ridge path, plotted as a function ofm, for four fields: h/T
50.05, 0.1, 0.15, and 0.2~from crosses to open squares! at T
50.88Tc. The arrows at the minimum of these functions corr
spond to the saddle points: they move towardm52N as the field
increases.

FIG. 8. Mean Metropolis~MM ! relaxation path fromm52N to
m50 at T50.88Tc and h/T50.15 ~dashed line! and the corre-
sponding equilibrium distribution~ED! path ~full line!, plotted for
the 838 system. The mean Metropolis path is calculated by av
aging over 104 escapes from the metastable state. The arrow po
out at the saddle point of the ED surface; the difference between
paths remains very small, but is already sizable before the sa
point. Note that this systematic regular departure toward hi
density macrostates is in large excess of the various statistical
ters involved in the calculations.
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the beginning of the relaxation path for intermediate fields
while there is no clear-cut border for the metastable regio
the macrostate space. In that sense, the conjecture ment
in Sec. I about a Penrose-Lebovitz formalism of the me
stable states even in systems with short-ranged interac
@10,15# is supported. It is worth noting that the accuracy
the ED description is highly related to the stochastic nat
of the escape from the metastable phase. The stochasti
ture is due to the presence of the energy barrier: the hig
the barrier, the rarer the fluctuations leading to escape f
the metastable phase. In such a case the system has
time, before it escapes, for exploring its configuration sp
@degeneracyN(s,m) of the $s,m% macroscopic states#, ob-
taining ‘‘knowledge’’ of the macroscopic ED as in the equ
librium phase. The progressive crossover from stochasti
deterministic, i.e., from metastable to unstable regions of
macrostate space, is merely due to the progressive lowe
of the free energy barrier. The departure of MM paths
systematically directed toward high-degenerated macros
~the density’s maximum is in the center of the macrost
space!: when the barriers are low, it may be easier to esc
passing by neighboring high-density states despite hig
barriers.

It is clear that the ED description falls down for stron
fields ~h being of the same magnitude asJ!, where there are
no more energy barriers for the single spin-flip: the system
prepared in an unambiguous unstable phase correspondi
a purely out of equilibriumfeature, and leading to classic
deterministic relaxation. In fact, if the energy decreases
each spin-flip proposal toward the stable phase, then all
are accepted by the Metropolis dynamic and the behavio
purely deterministic. It is the case for fields larger than
crossover valueHuns5zJ, with z the number of interacting
neighbors. Then the system merely follows the higher d
sity N(m,s) path in the macrostate space, irrespectively
the field and temperature. The latter behavior~inherent to the
absence of the energy barriers! is also observed in presenc
of weak energy barriers, i.e. for fields smaller thanHuns, as

FIG. 9. Mean Metropolis~MM ! paths for the 24324 lattice
plotted for relatively strong fields~with respect to theHDSP!:
h/T50.075 ~dashed line! and h/T50.25 ~dot-dashed line! at
T50.88Tc. The full line shows the corresponding ED path; the E
surface has no saddle point at these fields.
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in Fig. 9 where are shown two MM paths for fields belo
and beyondHuns. It is known@38# that dynamical properties
far from equilibrium are highly dependent on the type
dynamic, e.g., the choice of the transition probabilities sa
fying the detailed balance condition. It would be interesti
to study other microscopic dynamics—Glauber, heat bath
cluster dynamics like Wolff or Swendsen-Wang@24#—from
the same viewpoint.

It is worth noting that the saddle point depends on
dimension chosen for the ED~hyper!surface. This is illus-
trated in Fig. 10, where them value of a two-dimensiona
saddle-point position and the corresponding one-dimensio
extremum value are compared. Consequently, the field v
for which the saddle point vanishes~i.e., there are no longe
free energy barriers beyond that field! depends on the dimen
sion of the projected probability~free energy!. Thus the sys-
tem behavior is still stochastic even when the tw
dimensionial probability surface no longer has a second
peak: the latter should still exist in higher-dimensional E
spaces. Then another prospect would be obtaining hig
dimensional densities of states, e.g., including the num
and ~or! the size of the clusters, which are important
nucleation phenomena. Also, for a more quantitative eva
ation of the ED description, a detailed study of the corre
tion beetween the two~or more! dimensional saddle point
and the DSP introduced in Ref.@34# should be instructive.

IV. PERSPECTIVES AND DISCUSSION TOWARD
A MULTIVARIABLE MACROSCOPIC DYNAMIC

Concerning the first slow part of the relaxation from t
metastable state, the above macrostates being well desc
by the ED, it is appealing to substitute the Markovian micr
scopic local dynamic over the 2N configurations by a mac
roscopic, stillMarkovian one over the;N2/2 macrostates

FIG. 10. The equilibrium distributionP(m) ~dashed line! and
the equilibrium probabilities of the (s,m) points on the ED path
~full line!, plotted ~both on a log10 scale! as a function ofm for
h/T50.25,T50.88Tc, for the 838 lattice. The minimum ofP(m)
clearly differs from the minimum ofP(m,smax) corresponding to
the saddle point of the ED surface.
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$s,m%. In other words, when the system has sufficient ti
to explore all the configuration space associated with
macrostates defined here, it can be assumed that the de
balance condition is also satisfied by the macrostates$s,m%.
The fact that the last arguments are much less valid for
last and fast part of the relaxation is not of importance for
mean metastable lifetime, which is dominated by the sl
part of the relaxation. This projection from a microscopic
macroscopic dynamic was previously proposed and chec
in Ref. @22# for only one variable, the order parameterm. It
was just mentioned there that such a macroscopic dynam
an exact one only for long-ranged interaction equivale
neighbor models@39#, which are also called mean-field mod
els. For short-ranged interaction systems this is only an
proximation; the exact projection of the microscop
Markovian dynamic over macroscopic variables has no r
son for being still Markovian. The reason is that, for t
latter systems, the macrostates defined by the order pa
eter m contain nonequivalent microscopic configurations
they are equivalent only in the equivalent neighbor mode
and the latter assumption leads to neglecting memory ef
propagation from thedifferent microscopic configurations
corresponding to the same value ofm. Hence, there it was
called a mean-field dynamic. As was argued in that w
@22#, the macroscopic dynamic for short-ranged interactio
may be a good approximation for slow variables such asm
andE in the metastable state~see also Refs.@40,41#!. Obvi-
ously, a macroscopic dynamic over the variablesm and s,
being equivalent tom andE ~Sec. II A!, stands no less as a
approximation of the underlying microscopic dynamic th
the one-variable macroscopic dynamic of Ref.@22#: different
microscopic configurations belonging to the same macros
may lead to very different features for the future. Howev
there is much less information neglected by the macrost
$s,m% than by those defined only bym, the more so becaus
we also define the macrostates by the energy. Neverthe
the supplementary information from the microscopic drop
picture, coming from the variables, is no more than the tota
length of the interface between up- and down-spin areas

The complete knowledge of the macrostate probabili
enables establishing the balance condition

P~$s,m%k!W~k,k8!5P~$s,m%k8!W~k8,k! ~10!

corresponding to a Markovian dynamic. The interest of
latter lies in the fact that it leads to very simple calculatio
in principle, calculating all the moments of the metasta
lifetime distribution can be reduced to the inversion of theW
matrix @42,22#, satisfying Eq.~10! ~the latter is anM3M
matrix, whereM is the number of states!. While the corre-
sponding matrix of the microscopic dynamics is an 2Nx2N

matrix—and then one can only do Monte Car
simulations—the matrix inversion is possible for the pres
macroscopic dynamic for which the number of macrosta
$s,m% is ;N2/2. Then the lifetime calculation, which n
longer involves a simulation~equivalent to an integration
over time!, is independent of the lifetime value.

In order to keep the same local dynamic, the permit
transitions between macrostates are restricted to single
flips, i.e., m values differ by62 and s values differ by
6864 or 0. There is not a unique transition matrixW sat-
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isfying Eq. ~10! ~i.e., there is not only one stochastic d
namic leading to equilibrium!; we choose simple Metropolis
type matrix elements

W~$m,s%,$m8,s8%!5minH 1,
P~m8,s8!

P~m,s! J , ~11a!

with m85m62 ands85s6k, wherek50,64,68,

W~$m,s%,$m,s%!512 (
$m8,s8%Þ$m,s%

W~$m,s%,$m8,s8%!.

~11b!

Solving the macroscopic dynamic by the Monte Ca
method, we obtained both lifetimes and relaxation pat
leading to the following observations.

~i! The microscopic and macroscopic dynamics pa
similarly compare to the two-dimensional ED path, althou
the macroscopic dynamics depends only on the two varia
s and m of the above equilibrium distribution. This mean
that the progressive departure from the ED description
really inherent to the metastable character of the initial st
that is, to the escape from the quasistationary stationary s
ation corresponding to the metastable phase toward the
stationary, out-of-equilibrium situation.

~ii ! The comparison between the relaxation paths from
microscopic and macroscopic dynamics confirms both
sumptions of phenomenological macroscopic kinetic theo
@43,31–33# ~for a review, see, e.g., Refs.@44–46# and the
results of previous work which compare between differe
microscopic dynamics@20# and between microscopic an
one-variable macroscopic dynamics@22#. That is, when the

FIG. 11. The average lifetime of the metastable state~relaxation
time from m52N to m50! obtained by Monte Carlo simulation
with the microscopic Metropolis dynamic and with the macrosco
Metropolis dynamic, plotted as a function of the applied field,
the 838 lattice ~upper curves! and the 24324 lattice ~lower
curves! both atT50.88Tc. The field varies in the stochastic regio
All values are calculated by averaging over 1000 independent pa
The time scales~in units of Monte Carlo steps per site MCSS a
adapted to fit each other at the lower field value. The field is
energy, i.e., temperature, units.
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macroscopic relaxation is very slow with respect to the ti
scale of the dynamic details~as it is for the first and long par
of the relaxation path!, the process is weakly dependent
the type of dynamic. Indeed, in phenomenological theorie
is assumed that in this case the details of the dynamics
averaged, and the behavior of the system is only governe
free-energy changes@44#. In addition, we show that the firs
long part of the decay nearly fits the equilibrium distributio

~iii ! In a second step we have investigated the lifetim
the computed mean lifetime values, given by the micro
namics and macrodynamics, as a function of the app
field, are reported in Fig. 11. The microdynamics and m
rodynamics compare well for the larger size, where the
surface is steep around the ridge path. In this case, due t
presence of high-energy barriers, the scatter of microsc
relaxation paths, during the first and long part of the decay
relatively weak, as is suggested by the projection over
two macroscopic parametersm ands showed in Fig. 5~or by
the comparison between the standard deviations on thes̄m
values for the two sizes: 838 and 24324!. Therefore, the
details of hidden microscopic paths are not able to mod
the future sizably: memory effect propagation through va
ables other thans andm is not efficient, and the Markovian
macroscopic dynamics is a very good approximation.

In summary, we studied the relations between the featu
of the two-dimensional macroscopic ED and the relaxat
d.
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from a metastable state. The projected relaxation paths
directly obtained by a projected ED, with excellent accura
and the associated stochastic macroscopic dynamics
good approximation of the exact projection of the micr
scopic one. Of course, the ED description fails when
system relaxes from an unstable state. These results
highly encouraging for investigating metastable states via
analytical-like method, which is free from the unavoidab
limitations of the microscopic~time integrationlike! Monte
Carlo simulations. The determination of relaxation pa
may be very useful for systems with more than one me
stable phase~the Blume-Capel model for a three-state sy
tem! so as to predict the probabilities for visiting the stat
with different orderings.
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